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The combined effects of favourable pressure gradient and streamline curvature were
studied experimentally using an approximately homogeneous uniformly sheared
turbulence. The shear flow was initially generated in a straight wind tunnel, where the
turbulence was allowed to develop a fixed stress anisotropy, and then subsequently
directed into a curved wind-tunnel test section. Streamwise pressure gradients were
applied by convergence of the curved tunnel walls in the plane of the mean shear. In
one set of experiments, convergence was applied in the first half of the curved test
section, but not in the second half. In another set of experiments, the convergence
was applied in the second half of the curved test section, but not in the first. This
arrangement permitted the study of application and removal of streamwise pressure
gradient to curved shear flow. Measurements showing the response of the turbulence
stresses to the changing mean strain rates are reported and are consistent with previous
studies which show that stabilizing curvature diminishes the turbulence energy and
stresses. The addition of the streamwise strain rate associated with favourable pressure
gradient was observed to have the effect of further diminishing the turbulence activity
and its overall anisotropy. However, the important shear component of the aniso-
tropy was increased above what it would be under the influence of curvature alone.
The removal of streamwise strain rate caused the turbulence to recover a structure
similar to that measured for uniformly curved shear flow; although this adjustment
included an increase in the shear component of anisotropy prior to its gradual
relaxation.

The principal direction of the Reynolds stress tensor was found to be closely related
to the principal direction of the mean strain rate tensor in the present flows. This
result was also found to be valid in the outer layer of accelerating curved boundary
layers. A relationship between the direction of the principal mean strain rate and the
mean flow curvature and streamwise strain rate was formulated to explain how each
influences the state of turbulence stress.

1. Introduction

Turbulent shear layers in the form of boundary layers, wakes, mixing layers, jets
and various combinations of these, arise frequently in technological and natural flows.
They are critical regions of momentum and heat transport for which the character
of the turbulence is highly influential. This turbulence evolves subject to external
constraints imposed by solid and irrotational flow boundaries. In many practical
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FiGURE 1. Schematic drawing of accelerating curved shear flow showing the curvilinear
coordinates used for its description.

circumstances, these external conditions include streamwise pressure gradients and
curvature. This is especially true of boundary layers where external flow curvature
is essential for the production of the pressure gradients. Specifically, lifting aerofoils
have boundary layers that are predominantly convex and experience strong favourable
and weak adverse pressure gradients. Highly cambered aerofoils, such as those used
in turbo-machinery, may also include significant regions of concave curvature. Both
pressure gradient and surface curvature have been shown to have a significant effect on
boundary-layer turbulence; although traditional boundary-layer analysis has regarded
streamwise pressure gradient as more important.

In the context of boundary layers, flow curvature is directly related to centripetal
acceleration, pU?/R, and therefore to the radial pressure gradient in the external flow,
where R is the local radius of surface curvature, U, is the speed of the external flow,
and p is the fluid density. Similarly, the streamwise pressure gradient may be equated
to streamwise acceleration, —pU,dU,/ds, where s is the distance along the surface.
The curvature and streamwise strain rates imposed on the outer edge of the boundary
layer can be deduced from these acceleration components and their ratio is exactly
equal to the ratio of the strain rates, (dU,/ds)/(U./R). This ratio is approximately
constant across a thin shear layer. In typical aerofoil applications, both streamwise and
normal components of acceleration are of similar orders of magnitude over most of
the surface with all four quadrants in the plane of acceleration occupied. The present
study considers only flows having favourable pressure gradient and convex curvature.

The objective of the present work was to study the combined effects of favourable
pressure gradient and streamwise curvature on sheared turbulence using a simplified
flow in which the mean shear, flow curvature and mean streamwise strain rate were
approximately uniform and direct wall and entrainment effects were absent (see
figure 1). Such a flow is an extension of the homogeneous shear-flow problem that
has been the subject of extensive theoretical, numerical and experimental studies.



Effects of pressure gradient and curvature on turbulence 305

Previous experimental studies of uniformly sheared turbulence, including curvature,
are included in the data bank AGARD AR-345 (1998) for the purposes of testing LES
and other models of turbulence. The value of this class of flows lies in the simplicity of
their boundary conditions and statistical description combined with the inclusion of
the essential elements of turbulence production and energy redistribution. The present
accelerating, curved, shear flow was developed in stages with the uniform shear flow
generated in a straight wind-tunnel section and the flow curvature generated by
guiding the flow into a wind tunnel of constant centreline curvature. The streamwise
pressure gradient is applied by convergence of the curved wind-tunnel walls in the
plane of the shear. In all cases, the tunnel walls converge at a constant rate which,
it will be shown in a later section, produces a fixed value of (dU/ds)/U?. The
turbulence of this flow remains approximately homogeneous on transverse planes
within the central core of the tunnel and the turbulence development under the
influence of the uniform mean strains is measured along the windtunnel centreline.
In this flow, the streamline convergence is coincident with mean flow acceleration
(favourable pressure gradient) and mean streamwise strain rate. Throughout this
paper, reference will be made to all four terms; however, it is the mean streamwise
strain rate that best correlates the observed effects on the turbulence.

2. Literature review

There exists a substantial amount of literature on the effects of streamline curvature
on shear-layer turbulence. The early literature was reviewed by Bradshaw (1973) in the
context of curvature being an ‘extra strain’ imposed on the shear layer. This approach
also considered streamwise strain resulting from flow acceleration as an ‘extra strain’.
It was identified that turbulent shear-layer development is much more sensitive to
curvature than laminar shear layers (or their stability). This sensitivity to curvature
cannot be explained by the explicit curvature terms in the Reynolds stress transport
equations. Generally it has been observed that convex surface curvature diminishes
boundary-layer turbulence levels and concave surface curvature enhances turbulence
levels, compared to uncurved flow. The sensitivity of a sheared turbulence to convex
curvature is generally reported to be greater. This result has been generalized to
other shear layer types by recognizing that the boundary layer on a convex surface
has a mean velocity increasing outward from the centre of curvature while the
concave boundary layer has the mean velocity decreasing outward from the centre
of curvature; convex and concave curvature are referred to as positive and negative
curvature, respectively. These observed changes in turbulence activity are accompanied
by changes in mixing length. A gross measure of the strength of curvature effects is
8/R, where § is the shear-layer thickness and R is the mean radius of curvature of
the shear layer with §/R < 0.05, indicating mild effects, and §/R > 0.1, strong effects.
Another measure of curvature introduced in the early literature and reviewed by
Bradshaw (1973) is the ratio of curvature-imposed strain to the mean shear rate.
Expressed in curvilinear coordinates running along the shear layer, this takes the
form S=(U/R)/(dU/dn), where U/R is the strain rate produced by curvature and
oU/dn is the mean shear rate. We can interpret S in other ways; for example, it is
the ratio of production (negative) of turbulence kinetic energy due to curvature strain
to the production due to shear strain; a Richardson number, based on an analogy
between curvature-induced body forces and buoyancy; and a ratio of turbulence
to extra strain rate time scales, using the inverse shear rate as a measure of the
turbulence time scale. One of the conclusions reached by Bradshaw (1973) was that
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the changes in turbulence shear stress due to prolonged application of extra strain rate
could be modelled by uv/uvy=(1—10S). A similar conclusion for the application
of streamwise strain rate uwv/uvo=(1—4Q) where Q =(0U/ds)/(dU/dn) was also
proposed. In the case of changing curvature, the adjustment length of boundary-
layer-turbulence was taken to be 104.

Many excellent experimental studies of curvature have been performed during the
30 years following Bradshaw (1973). These include both positive (convex) and negative
(concave) curvature of jets, wakes, mixing layers, duct flows and boundary layers.
Many of these were designed with considerable care to eliminate extraneous effects
such as streamwise pressure gradient. Boundary-layer and duct flows were reviewed
by Bandyopdhyay (1989) and Patel & Sotiropoulos (1997). Studies of curved mixing
layers have been published by Castro & Bradshaw (1976) and Plesniak, Mehta &
Johnston (1994) and studies of curved wakes by Savill (1983), Ramjee & Neelakandan
(1989), Weygandt & Mehta (1995) and Koyama (1981, 1983). These experiments
served to reinforce the early work by adding many details to the broad view described
above. They also provide test cases for turbulence model calibration. One of the
results that may be derived from these studies is that convex curvature produces a
loss of anisotropy of the large-scale turbulence motions of which the shear stress is
only one measure. In contrast, concave surface curvature enhances the anisotropy of
the large-scale motions. There is no perceptible effect of curvature on the small-scale
motions of turbulence. In spite of this large body of experimental work, Patel &
Sotiropoulos (1997) conclude that little insight into how streamwise flow curvature
affects the turbulence has been achieved.

A simple curved flow having a uniform shear and a nearly homogeneous turbulence
was introduced by Holloway & Tavoularis (1992, hereinafter referred to as HT). This
study is directly relevant to the present work since it includes a curved test section
where the sheared turbulence was exposed to prolonged constant curvature. A wide
range of curvature effects was explored using different tunnel curvatures and mean
shear rates. This study was designed to reveal the direct effect of curvature on sheared
turbulence by eliminating the complicating effects of flow inhomogeneity, inter-
mittency and pressure gradients. Of course, it does not provide information about the
effects of curvature on turbulent diffusion or the near-wall layers. The study covered
an experimental range —0.5 < § < 1.0. The turbulence of the more strongly sheared
flows (low |S]) developed a fixed structure, and exponent of growth, within the tunnel
test section that was well correlated with S. For example, the dimensionless shear
stress, uv/q> (where g* is twice the turbulence kinetic energy per unit mass) is a
sensitive measure of curvature effects, and was found to follow the rule uv/q*=
—0.14(1 —3.08)sgn(S) in the range —0.2 < § <0.3. The change in sign for S > 0.33,
which produced counter-gradient momentum transport, was observed. The turbulence
stresses and integral length scales were found to grow exponentially for S <0.05
and decay for S > 0.05. Subsequent experiments of uniformly curved shear flow inclu-
ded Chebbi, Holloway & Tavoularis (1998) where curvature was reversed within an
S-shaped tunnel to reveal the response of uniformly sheared turbulence to chang-
ing curvature. The experiment considered the curvature sequence: S=0.0, 4+0.05,
—0.05,0. and S=0,—-0.05,40.05,0. It was found that the equilibrium structure
observed by HT was approached in each subsection after approximately 4.5 units
of shear strain. The initial adjustment being proportional to the angle of curvature,
and the relaxation distance being proportional to the inverse shear rate. Chebbi et al.
(1998) also examined some of the curved boundary-layer data and showed that the
uniformly curved shear-flow results were consistent with what had been observed
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in the outer region of boundary layers when one accounts for the local shear rate.
In particular, insight as to the sensitivity of the outer boundary-layer turbulence
to convex turbulence, the edge of the so-called ‘active shear stress layer’ (Gillis &
Johnston 1983) and the adjustment length for changes in curvature was provided.

Modelling of curvature effects has progressed from correlating the changes in
mixing length, or eddy viscosity, that accompany streamline curvature to transport
models based on the explicit flow curvature effects in the production and advection
terms of the Reynolds stress equations. Patel & Sotiropoulos (1997) describe these in
some detail as they apply to boundary-layer flows and conclude that each level of
model may be made to fit the data satisfactorily with tuning of the model constants,
although none is completely satisfactory. A model parameter of particular interest to
the present study is the rate of change of the principal mean strain rate direction,
df/dz, introduced by Spalart & Shur (1997) as a measure of curvature and rotation
effects and a replacement for U/R. This variable is directly applicable to homogeneous
curved flows and its applicability to flows with pressure gradient will be explored.
An explanation of curvature effects that was based on the inherent rotation of
the shear direction with respect to inertial coordinates that accompanies curved
flows was presented by Holloway & Tavoularis (1998). It provided semi-analytical
expressions for the Reynolds stress anisotropy measured in the experiment of HT
for the prolonged application of constant curvature. It was also demonstrated in
the paper that a number of popular Reynolds stress transport models do not
model the Reynolds stress anisotropy that develops under prolonged streamline
curvature accurately. The arguments in Holloway & Tavoularis (1998) have since been
extended by Holloway & Roach (2001) to predict the anisotropy of the integral length
scales.

The effects of favourable pressure gradient on boundary-layer turbulence are impor-
tant because of their role in flow stability and skin friction. Streamwise pressure
gradients can be generated by lateral convergence of the flow, transverse plane con-
vergence, or a combination of the two. In the present study, we will concern ourselves
only with the plane, or two-dimensional, convergence case. An early literature review
on accelerating boundary-layer studies, in the absence of curvature, was provided
by Narishima & Sreenivasen (1973) with an interest towards boundary-layer relami-
narization. Experimental studies of accelerating boundary layers have been published
by Blackwelder & Kovasznay (1972), Spalart & Watmuff (1993), Fernholz & Warnack
(1998) and Warnack & Fernholz (1998). Gross measures of pressure gradient effects
on boundary layers are (§/1,)(dP,/dx) or (v/U2)(dP,/dx). Blackwelder & Kovasznay
(1972) and Warnack & Fernholz (1998) report that, for (v/U2)(dP,/dx)~4 x 107,
the near-wall turbulence activity is suppressed, the viscous layer thickens, and the
skin friction coefficient is increased. This inner-layer effect scales with viscosity, and
therefore is not included in the present experimental study. (Note that Q =0 on the
surface.) In the outer regions of the boundary layer, the normal components of the
Reynolds stresses approach one another, while the shear stress and the turbulence
kinetic energy remain practically unaffected in spite of a diminished mean shear.
Warnack & Fernolz (1998) showed that wv/g” increased by 25% as a result of
the streamwise acceleration. The finding pertinent to the present work, although
perhaps not the most significant for this class of flow, is the behaviour of the outer
layer; but neither of the above measures of pressure gradient is directly related
to the extra strain rate parameter, Q =(dU/ds)/(0U/0n). It was established using
the mean velocity profiles presented by that Balckwelder & Kovasnay (1972) that
Qmax ~ 0.35 at a boundary-layer location of y/§ ~0.5. Similarly, Case 1 of Fernholz &
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Warnack (1998) has Q... ~0.17. Both of these studies will be discussed further in
§7.2.

There have been a considerable number of studies on the combined effects of
streamwise curvature and pressure gradient on shear-layer turbulence in recent years.
Published studies include accelerating boundary layers on curved surfaces, wake flows
and uniform shear flows. The boundary-layer studies appear in three forms: (i) flow
on a uniformly curved surface with pressure gradient (Schwarz, Plesniak & Murthy
2002); (ii) boundary-layer flow over a surface with a two-dimensional bump (Wu &
Squires 1998; Webster, DeGraaff & Eaton 1996; Baskaran, Smits & Joubert 1987,
1991); and (iii) boundary-layer development in an S-shaped duct (Bandyopadhyay &
Ahmed 1993; Lopes & Piomelli 2003). A curved wake flow with favourable pressure
gradient has been studied by Nakayama (1987). Each of these studies reports more
or less detailed turbulence measurements and, in particular, the structural parameter,
uv/q?, which was found to be sensitive to both curvature and streamwise acceleration.
Some also provide insightful, albeit incomplete, analysis of curvature and acceleration
effects using the Reynolds stress equations. Unfortunately, the strain history of some
of these flows is very complex, such as the flow over a hill and the curved duct
flow, and a quantitative comparison of the observed effects to the present flow would
require the use of a comprehensive model which is beyond the scope of the present
study.

The study by Schwarz et al. (2002) is the simplest of the flows listed above and
presents a strain history very similar to the present work and will be used for compari-
son to the present results. It considered a constant, convex surface curvature combined
with favourable and adverse pressure gradients. The purpose was to investigate the
effect of combining strains due to curvature and pressure gradient on the boundary-
layer turbulence. Conditions of moderate and strong curvature (§/R > 0.05 and 0.10,
respectively) were considered in combination with moderate and strong favourable
pressure gradient, with 10%(v/U2)(dP,/dx)=0.5 and 1.0. Note that the pressure
gradient is not strong enough to cause relaminarization in the absence of curvature.
Schwarz et al. (2002) introduced the ratio of streamwise and radial pressure gradients,
P..=(3P/3s)/(dP/dn)=(—U,dU,/ds)/(U?/R), which is exactly equal to —Q/S
(defined above) throughout the boundary layer. Considered separately, S and Q are
exactly zero on the surface and maximum at the outer edge; both S and Q decline
with increasing flow Reynolds number owing to the increased shear rate in the
boundary layer. Schwarz et al. (2002) present combinations of strong curvature with
moderate and strong pressure gradient giving Q/S=1.2 and 0.6. The angles turned
within the measurement sections were 30° and 55° for the 0.7 m radius wall and 0.4 m
radius walls, respectively. Profiles of mean velocity, turbulence stresses in the plane
of curvature, principal angle of the Reynolds stress tensor, and total shear strain
parameter (Maxey 1982) are reported for various streamwise positions. The authors
draw a number of conclusions, including the following. (i) The inner part of the wall
layer (y* < 50) can be scaled in terms of inner-layer variables for all cases considered.
(ii) The outer layer is strongly affected by combined curvature and streamwise accel-
eration. The effect, stronger in the Q/S =1.2 case, is to reduce the turbulence veloci-
ties and their correlation. (iii) Convex curvature reduces the principal angle of the
Reynolds stress (moves it towards the streamwise direction) and favourable pressure
gradient counteracts this reduction. (iv) Favourable pressure gradient increases the
total strain substantially.

An experimental study of the effects of favourable pressure gradient on curved
uniform shear flows was conducted by Akbary (1997). It was a predecessor of the
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experiments of Roach (2001) and, in fact, used an earlier version of the same
experimental facility. The flow configurations covered by Akbary were simultaneous
application of streamwise pressure gradient and curvature and simultaneous removal
of streamwise pressure gradient and curvature. The experiments spanned a range of
—0.2 <8 <+40.2 and 0 < Q < 0.3 with the cases of strongest curvature and streamwise
strain rate corresponding to the mild cases of the present flow. A significant difference
between these flows and those of the present study is that the present study used a
straight tunnel of twice the length providing more development distance before the
application of curvature. Two of the flows of Akbary (1997) that are complementary
to the present results will be reviewed in the discussion section.

To summarize, laboratory studies of the combined effects of streamwise curvature
and favourable pressure gradient on turbulence exist for wakes, boundary layers
and duct flows within a rather limited range of flow conditions. There is agreement
among these studies, at least in the qualitative sense, on the general effects on the
turbulence; for example, both convex curvature and favourable pressure gradient
reduce the turbulence activity and cause adjustments in the structural parameter,
uv/q*. Furthermore, in their own context, each flow is a valuable contribution that
may be regarded quantitatively. However, the unique features of each flow make it
difficult to compare the detailed effects among flows and thereby develop the type
of generalization that is an important feature of insightful turbulence modelling. For
example, an important and outstanding question is whether the effects of curvature
and favourable pressure gradient on turbulence may be regarded as independent
and therefore additive. This is a difficult question to answer with generality based
on say, boundary-layer turbulence, because of the interaction of the wall boundary
condition and favourable pressure gradient that is absent from wake flow. In fact,
these extraneous features are difficult to model accurately in their own right and
this can greatly increase the uncertainty of interpretation. There is then a need for
an experimental study of a turbulent shear flow having both flow curvature and
favourable pressure gradient and as few other extraneous features as possible so that
it may represent a common element of all of the flows listed above. At present, a study
of this type does not exist in the literature and the flow described here is an attempt
to address this deficiency. The measurements presented describe the development of
an initially sheared turbulence in a mean flow that may be idealized for the purposes
of computation as a homogeneous field of strain that includes elements of shear,
curvature and streamwise acceleration.

3. Analytical considerations
3.1. Description of the flow

The subject of the present study is a curved, converging flow with uniform shear. A
schematic of an accelerating curved shear flow can be seen in figure 1. Because of
the nature of the geometry, a curvilinear coordinate system that runs parallel to the
mean streamlines is best to describe the flow (Bradshaw 1973). The origin of which is
set at the start of the curvature, with s =0, and on the flow centreline, n =z =0. The
centreline radius is denoted by R.. The three components of velocity are tangent to
the s, n and z coordinate directions, respectively. The components, of mean velocity
will be denoted by U, V and W and the components of the velocity fluctuation by u, v
and w. Angles in the (s, n)-plane are measured as positive in the counterclockwise
direction.
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3.2. A model of the mean flow

An aerodynamic analysis of the uniform shear flow illustrated in figure 1 is given to
provide insight into the effects of curvature and streamwise acceleration on the mean
velocity profile. For this purpose, we first restrict our analysis to the core of the wind
tunnel and exclude the boundary layers and associated non-uniformities. Throughout
the wind-tunnel test sections, the flow is assumed to be two-dimensional with vorticity
components, ¢, =¢, =0 and ¢, a constant, equal to its value in the straight tunnel
section in which the shear was generated. (It should be noted that in the core of the
wind tunnel, the direct viscous action is negligible and that the net turbulent diffusion
is exactly zero for homogeneous turbulence.) The volume flow rate per unit depth, f,
is also conserved so that the values of streamfunction are constant on the upper and
lower boundaries. The vorticity in this flow is defined as

-1
n av U aU

=14+ — — = ==, 1
£ ( +RC> <8s RC> on M

that for the present analysis we will reduce to the expression,

-1
n U dU

=—(1+4—) =——— 2
: <+RC> g8 )

valid in regions where 9V /ds is small or, in other words, between sections having
sudden changes in radius, R., or tunnel height, 4. Integrating (2) gives a circumferential
velocity of Couette form composed of irrotational and rotational parts,

U=_7 R B(n + R.), 3)
where A depends on the local values of & and R,
2(qg — h R,

(q ;Z C) (4)

" In((h + R)/(R. — h))

and B =c¢,/2. The streamfunction for the flow can be derived from (3) using the
definition U =9y /dn as
n+ R,

\//:A1n<Rc_h

with ¥ =0 on the lower flow boundary (n <0). Total pressure is conserved along
lines of constant streamfunction so that the static pressure may be determined from
Bernoulli’s equation.

The radial profiles of velocity and pressure that result from (3) and Bernoulli’s
equation applied along streamlines are shown in figure 2 for the initial straight tunnel
with nominal values: U.=10ms™!, ¢, =9U/dn =275, a curved tunnel of R, =3m
and curved tunnels of equal curvature after various degrees of flow convergence. The
uniform profiles of velocity generated in the straight wind tunnel change only slightly
as a result of applying curvature, and the effects of flow convergence tend to return
the profile to a linear form. The pressure in the initial straight tunnel is uniform, after
curvature it has adjusted by rising at the outer wall and falling at the inner wall. The
streamline that enters on the centreline of the curved tunnel migrates to smaller radii,
but there is little pressure gradient in this region. With flow convergence the pressure
decreases, more so at the inner surface.

A relationship between centreline velocity and channel height may, for the practical
purposes at hand, be based on the near linearity of the velocity profiles. This leads to

) + B(n* — h?*) + BR.(n + h), (5)
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FIGURE 2. Development of velocity and pressure profiles of an initially uniform shear flow
subjected to flow curvature and convergence. Results are based on an inviscid model of
uniform vorticity and fixed two-dimensional flowrate. Line length indicates the degree of flow
convergence. The dashed lines indicate profiles in the initial straight flow.

the approximate relationship, f = U.h, and therefore

et
2 ds fds
In the present experiments, the rate of flow convergence, di/ds, was fixed and we see
that (6) implies that the streamwise strain rate, dU,/ds, increases along the tunnel as
does the streamwise acceleration, U.dU,./ds =—0d P /ds.
We now consider the strain rate field of the curved converging flow. The mean
strain rate on the tunnel centerline (n =0) for V =0 has the tensor form

aU ou U
o

as on R
d=1 7
2lou U 28U ’ g
on R as
with dy; = —d,, for mean flow continuity. The principal strain rates in the (s, n)-plane

are

AU\’ [oU U\’
dl,zzi‘%\/<2¥> + <8_n_E) y (8)
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with the first principal strain rate, dj, inclined to the s-coordinate at the angle
au U

it |0 R 1 (1S
6 = 5 tan 28U = 3 tan <2Q> 9)
as

and d, at 90° to d;. The direction of pure shear in this flow is at the angle 8 =0 —45°

and the maximum shear rate is numerically equal to the principal strain rate.
Equations (8) and (9) show that both streamwise strain and curvature affect

the principal strain rates and directions of the principal axes. In the case of a fixed

streamwise strain rate, the direction of the principal axes, or equivalently the direction

of maximum shear, is fixed relative to the s-coordinate direction and ranges from 45°

for Q=0 to 0° for large Q. However, a changing streamwise strain rate causes the

principal axes to rotate relative to the s-coordinate direction at the rate

3S 30
do —Q - — (=87
ds  (1—9)2+402

Equation (10) is consistent with the general formula given by Spalart & Shur (1997)
for rate of rotation of principal mean strain rate axes. An increasing streamwise strain
rate intensifies the principal rate of strain and diminishes the rate of rotation of the
strain rate axes relative to the (s, n)-coordinates.

Curvature alone, whether constant or not, has no effect on the angle of principal
strain rate relative to the s-coordinate direction. However, in a curved flow, the
direction tangent to coordinate s, when viewed from a frame convected at the mean
speed, U., is itself rotating relative to the laboratory frame at the rate 2 =—U./R..
Therefore, the application of flow curvature causes a rotation of the direction of
the principle strain rate, or direction of maximum shear, relative to fixed laboratory
coordinates. The vorticity relative to this rotating frame of reference becomes

U U oUu U
= (- =) —-22=—( ——— 11
s <RL. + Bn) <8n RC>’ (1)

(10)

which is exactly equal to the rate of shear strain in the absence of streamwise strain. In
other words, the mean strain field of a non-accelerating uniformly curved flow viewed
in a frame convected at the mean speed can be interpreted as a rotating parallel
shear flow. We can see then that both curvature and streamwise strain rate affect
the angle of principal mean strain rate when measured relative to an inertial frame.
This analysis is, of course, limited to the immediate vicinity of the tunnel centreline
where the mean strains may be considered approximately homogeneous and there is
no solid boundary that would fix the streamline direction relative to the laboratory
frame.

4. Turbulence
4.1. Reynolds stresses
The components of the Reynolds stress per unit mass expressed in (s, n)-coordinates

are: u?, v2, w?, wv, uw, and vw with the latter two shear components identically zero
in the present flow, owing to the plane symmetry. The sum of the normal stresses,
g*>=u?+v2+w? is twice the kinetic energy of the turbulence per unit mass and is

invariant to rotation of the coordinate axes.
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The principal stresses in the (s, n)-plane are

22 102 22\ 2
01,2=M;U i\/(u 2v> + uv?, (12)
with the inclination of the principal stress axes to the s-coordinate given by
_ 2uv
y:%tan 1<_2 _2> (13)
u’>—v

For uncurved non-accelerating uniform shear flow with dU /dn >0, y ~—20° to the
streamwise direction. The plane of maximum shear stress, 8 =y —45°.

The deviation of the Reynolds stress tensor from isotropic form can be evaluated by
the components of the dimensionless anisotropy tensor m;; zm/qz —8;;/3, where
u; =(u,v,w) and §; is the unit tensor. In the present flows prior to the start of
curvature and acceleration (dU /dn > 0), the anisotropy of the turbulence is

0.204+0.02 —0.1540.02 0
m;j = [ —0.154+0.02 —0.15+0.01 0 . (14)
0 0 —0.06 +0.01

Previous studies of uniformly sheared turbulence (HT) have shown similar anisotropy
of the turbulence.

The equations describing the development of the Reynolds stresses along the tunnel
centreline (n =0) are (Nakayama 1987; Baskaran et al. 1991)

D, — U __ [oU U
D () - <uza— t (5 i R—)) s — e (15)
D, — 3U U
E(%vz) - < a_ +2uvR_> +¢vv 8UU$ (16)
D
o, (302) = buw — 2w, (17
D _
D= —? (% U) +2(u? —vz) +¢uv Euvs (18)

where D()/Dr is the mean convective derivative along the tunnel centreline (n =0).
¢ represents the pressure—strain-rate correlation and e the viscous destruction. The
remaining terms result from the effects of mean strain and rotation on the stress tensor.
Neither the mean pressure gradient, nor the mean acceleration, appear explicitly in
(15) to (18), only the mean strain rates. . .

We can see that streamwise strain rate reduces > and increases v?, but has no
effect on the correlation wv. The absolute mean vorticity increases u?, and the frame
rotation decreases v2. The mean strain rate and frame rotation affect the correlation
uv.

The equation governing the development of ¢? along the centreline of the tunnel is

Dq? — U WU U
By = 2 —v)g—z (an R—C>+¢qz—8qz. (19)

For anisotropic turbulence with 2> v? and uv <0, the streamwise strain rate and
curvature reduce ¢> while the shear increases it.
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The effects of curvature and streamwise strain based on the explicit mean strain
rates appearing in (15)—(19) will be shown to be qualitatively consistent with the
present measurements. However, these direct effects of the mean strain rates are
mitigated by the turbulent action of the small scales and the pressure—strain-rate corre-
lation and these two terms must be accurately modelled before quantitative predictions
are possible.

4.2. Scales of development

In simple homogeneous shear flow the only scale imposed by the mean flow is the
shear rate (Harris, Graham & Corrsin 1977) and the stresses and length scales grow
with the total mean shear strain 7= f;(aU /on)dt, where, moving with the mean
centreline speed, df =ds/U..

In the case of curved shear flow, there are two time scales imposed by the mean
velocity field, 0U/on and U/R. (HT). It was shown by Chebbi et al. (1998) that,
immediately following a change of flow curvature, the development of the turbulence
scales according to the angle, 6 =— |’ Z(U /R.)dt and then increasingly with the mean
shear strain, T = f;(a U/on — U/R.)dt, until the components of turbulence anisotropy
and exponents of growth approach fixed values that depend only on the ratio, S. This
transition is complete by t =4.5.

In the present flow, there are three time scales imposed by the mean field;
oU/on, U/R., and dU/ds. Based on the above findings, we might expect that in the
converging curved shear flow, which is the subject of the present study, the mean shear
would still determine the period of adjustment to changes in the mean field and may
still be used to scale the exponents of growth of the turbulence scales, but that these
exponents, and the equilibrium values of anisotropy, would depend on both S
and Q.

5. Experimental apparatus and instrumentation
5.1. The wind-tunnel facility

The wind tunnel at the University of New Brunswick is of the open-return type
shown in figure 3. This type of wind tunnel is the most practical for the generation,
development and manipulation of uniform shear flows and has been used in several
previous studies. It is equipped with a mixed flow fan and a 20 h.p. variable speed d.c.
motor. The flow is conditioned with a large settling chamber and a 16:1 contraction
that produces a flow non-uniformity of less than 1% and a turbulence intensity of
<0.1% at the exit of the nozzle.

A uniform shear flow is produced using a shear generator placed immediately
downwind of the nozzle. It had 23 separate parallel channels each with an adjustable
flow resistance to produce a velocity profile that varied nearly linearly across the
core of the test section. In practice, the resistance of each channel must be tuned to
obtain the linear variation of the mean flow. The shear generator was followed by
a 0.4m long ‘flow developer’ (Karnik & Tavoularis 1987) with 23 obstruction-free
channels aligned with those of the shear generator. It was used to make the length
scales of the turbulence leaving the shear generator more uniform in the transverse
direction by allowing them to develop briefly in these restrictive channels of equal
height. The shear generator also serves to couple the mean shear rate to the mean
speed on the tunnel centreline, so that (U /dn)/U.= constant, and as a consequence
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FIGURE 3. Schematic of wind tunnel showing straight and curved tunnel test sections. The
junction between the straight and curved wind-tunnel test is similar in plan view. All dimensions
are in cm.

the turbulence stresses scale with the centreline mean speed in the laboratory frame
(Karnik & Tavoularis 1987).

The straight tunnel test section was 5m in length and located directly downwind
of the flow developer. The straight tunnel allows the turbulence to homogenize
and to develop an asymptotic state under the influence of uniform shearing as
described by Tavoularis & Karnik (1989); thus providing a well-defined initial state
of the turbulence for the subsequent application of flow curvature and streamwise
acceleration. The cross-sectional dimensions of the straight tunnel were nominally
57cm x 57 cm, though the sidewalls could be manipulated over the last half of the
section to compensate for boundary-layer growth.

Once the flow reached the end of the straight section, it passed tangentially into
the curved portion of the wind tunnel which had a centreline radius of 3m and a
streamwise extent of 314cm. The sidewalls of the curved section were made from
Plexiglas™ with slots cut for the insertion of probes into the airflow. The upper and
lower walls were made from rolled aluminium sheets and in two sections to allow for
the sequential application of different strains. Figure 4 shows the dimensions of the
curved test section.

The curved tunnel was made with a smaller cross-section than the straight tunnel
(50cm x 50cm) to permit the removal of the boundary layers which had developed
along the straight tunnel walls. The junction between the straight and curved test
sections is shown in figure 3. The flaps along the upper and lower surfaces of the
curved tunnel entrance were adjusted to help guide the flow through the transition and
maintain continuity of the mean speed and turbulence statistics. Along the curved test
section, a small amount of flow was removed from the corners to prevent boundary-
layer separation. As a consequence, the flow is only approximately conserved along
the length of the curved tunnel.

The probe was positioned in the curved tunnel along the 3 coordinate axes via
a computer and a Centroid CNC-3 stepper motor controller. This controller was
capable of positioning the probe to within 0.1 mm in the n- and z-directions and to
within 1 mm in the streamwise direction. These accuracies were considered sufficient
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FiGure 4. Curved wind-tunnel test section showing overall dimensions and measurement sta-
tions. The first and second sections may be converged independently to develop the flow
convergence. There is no flow convergence in the configuration shown.

because of the weak spatial inhomogeneity of the flow. Measurements were taken in
each of several (n, z)-planes. The locations of these points varied among experiments
and from plane to plane depending on the flow development. Once all of the desired
planes were completed, streamwise measurements along the centreline were taken in
the straight and curved sections of the tunnel. Measurements in the curved section
were limited to the first 280 cm owing to a deterioration of flow quality near the end
of the tunnel.

5.2. Instrumentation and measurement uncertainty

The fluid velocity was measured using standard constant temperature hot-wire
anemometry techniques (Bruun 1995). A Dantec P61 X-wire probe in conjunction
with two Dantec 56C17 anemometers were used to measure two components of the
fluid velocity simultaneously. The sensing elements are made from 5um diameter
tungsten wire, were 1.25mm long and separated by 0.9 mm. All streamwise integral
scales measured in the present flows were larger than 50 mm and therefore it may be
concluded that the effects of wire size on the energy-containing scales of the flow are
negligible.

Directional calibration of the hot wires for pitch consisted of fitting an effective
wire angle to the cosine cooling law as described by Bradshaw (1972). The yaw angle
was less than 12°, 95 % of the time in the turbulence and therefore the out-of-plane
velocity was not considered as it contributed less than 1 % of the wire cooling. Speed
calibration of the hot wires was performed in the wind tunnel under laminar flow
conditions with the probe placed at the first measurement point. The data were fitted
using least-squares to a modified form of King’s law which accounted for changes in
mean air temperature that were measured continuously by a thermistor immersed in
the air flow (Roach 2001).
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Variable Value Uncertainty Value Uncertainty
U (ms™) 9.78 1.3% 21.99 1.1%

V (ms™!) 0.46 0.20ms™! 0.368 045ms™~!
W (ms™) 0.02 0.20ms™! —0.414 0.45ms™!
q* (ms™?) 0.642 3.7% 0.621 3.5%
My 0.200 0.011 0.080 0.011

My —0.151 0.010 —0.049 0.010
My —0.049 0.010 —0.030 0.009

My —0.139 0.009 —0.125 0.008

TaBLE 1. Uncertainties in turbulence statistics for high and low speeds. Values correspond to
a 95% confidence interval.

The voltage signals from the anemometer bridges were low-pass filtered at 10 kHz
with a 6-pole Butterworth filter to remove electronic noise and then offset and
amplified so that the signals were in an appropriate range for digitization. The data
were sampled with a Keithley Metrabyte DAS-20 analogue to digital converter (ADC)
with a SSH-4 simultaneous sample and hold. The ADC had a resolution of 12 bits
and was set to a range of +0.5V (giving +0.12mV as the least significant bit).
Sampling was done at 2kHz to produce record lengths of 4096 points. This sampling
rate and record length were experimentally determined to be sufficient for the
calculation of the mean velocity and Reynolds stresses for the present flow conditions.
Fifty pairs of 4096 points were taken at each measurement point to provide a statistical
basis. Once all the measurement points had been visited, the probe was rotated about
its axis by 90° and the process repeated to measure the third component of the
velocity.

The velocity statistics were derived from the evenly spaced discrete velocity samples
by simple arithmetic averaging. An uncertainty analysis was performed using the
method of Chebbi et al. (1998) and the results are given in table 1 for two speed
ranges, corresponding to the unaccelerated and accelerated flows. They include both
systematic and statistical errors.

6. Measurements
6.1. Experimental conditions

Two levels of tunnel wall convergence were tested with two sequences of the curvature
and streamwise strain, for a total of four experiments. All flows started with uncurved
shear flow in which the components of the stress anisotropy had developed stable
values before the start of the curved test section (see (14)). In two of the flows, the
strain sequence consisted of the application of curvature alone in the first curved
subsection followed by the application of flow convergence in the second curved
subsection. These flows were denoted as A,, or A, depending on the strength of flow
convergence applied. In the other two flows, curvature and flow convergence were
applied simultaneously in the first curved subsection followed by the removal of
convergence in the second curved subsection. These flows were denoted by R,, or R;.
Schematics of the tunnel configurations used to produce these flows are shown in
figure 5 and a summary of flow conditions is shown in table 2.

The amount of data collected in a given (n, z)-plane was determined by the distance
between the upper and lower walls; as the tunnel walls converged, fewer points were
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FiGURE 5. The four converged flow configurations used for the present study. Configurations
A,, and A; apply flow convergence to a curved shear flow. Configurations R,, and R, remove
flow convergence from a curved shear flow. Tunnel centreline, along which development of
turbulence is measured, has a constant radius of curvature of 3m in all configurations. Outer
dashed lines show undeflected wall positions.

Prior to the

start of curvature

First curved subsection

Second curved subsection

Flow s <0 0<s<157cm 15cm <s <314cm
A, U,=99ms™! Curvature alone: Curvature with convergence:

AU /dn=25s" R.=3m, h;=05m, h;=0.5m R.=3m, h; =0.5m, hy =024m
Ay U,=99ms™! Curvature alone: Curvature with convergence:

AU /an=29s"" R.=3m, h; =0.5m, h; =0.5m R.=3m, h; =0.5m, h; =0.16m
R, U,=97ms! Curvature with convergence: Curvature alone:

AU /dn=25s"" R.=3m, h;=05m, h;=024m R.=3m, h; =024m, h;=024m
Ry U.=103ms™! Curvature with convergence: Curvature alone:

AU /dn=29s"" R.=3m, h;=05m, h;=0.16m R.=3m, h;=0.16m, h;=0.16m

TaBLE 2. Details of the flow configurations studied. Tunnel width was 50 cm.

measured. It ranged from 244 points to 124 points arranged in a two-dimensional
array. For the first level of convergence, the distance between the tunnel walls was
reduced to 24 cm, while for the stronger case, it was reduced to 16 cm. These represent
nominal cross-sectional area reductions of 52% and 68%, respectively. The speed up
of the centreline flow was less in all cases owing to air bled from the corners and the
adjustment of the streamlines resulting from the imposition of curvature.

6.2. Mean flow

The development of the normalized mean circumferential velocity along the centreline
of the curved test section for all four flows is shown in figure 6. The streamwise location
of measurement stations in figure 4 are indicated at the top of the graph. The curved
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FIGURE 6. Streamwise development of the circumferential component of mean velocity in all
four flow configurations. Last point is an extrapolation of measurements to the end of the
wind tunnel. Symbols correspond to flows as follows: @, A,,; O, As; ¢, R,,; O, R;.
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FIGURE 7. Transverse profiles of the circumferential component of mean flow velocity
in R, at measurement stations: @, 1; O, 2; ¢, 3;<,4; 1, 5;0,7; A, 9.

test section extends from s =0 to 314 cm. The division between the first and second
curved test sections is indicated by vertical dashed line at s =157 cm. For flows A,
and A;, the flow convergence occurs in the second curved subsection of the curved
test section and for flows R, and R, the convergence occurs in the first subsection.
The zone of measurement in the second subsection is limited by the end-effects of
the tunnel and for this reason it appears that greater velocities are reached in the
cases R, and R; where the convergence occurs in the first subsection. In fact, the
velocity rise in cases A,, and A, are comparable as the extrapolation based on reduced
cross-sectional area shows. The gap in the measurements near the end of the straight
wind-tunnel section was due to an experimental design that prevented access to this
part of the tunnel with the hot-wire anemometer.

The development of the radial and spanwise profiles of the mean circumferential
velocity component in flow R,, is shown in figures 7 and 8 and can be regarded as
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FIGURE 8. Spanwise profiles of the circumferential component of mean flow velocity
in R, at measurement stations: @, 1; ¢, 5; W, 7;, §; A, 9.
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FIGURE 9. Development of the mean flow vorticity, ¢,, along the wind-tunnel centreline.
Dashed lines indicate the beginning of each curved subsection. Symbols as in figure 6.

typical of all four flows. It can be seen that the profiles remain approximately linear
near the tunnel centreline (n =0) although curvature and convergence do have an
effect on the speed and rate of shear.

The streamwise development of the mean flow vorticity, ¢,, for each of the four
flows is shown in figure 9. The values of ¢, show some scatter, as we might expect;
however, the trend of a gradual loss of vorticity is clear in each case. The greater loss
of vorticity in flow R,, can be traced to a loss of mean shear as shown in figure 7.
Note that the full expression for vorticity (equation (1)) was used to calculate the
values of vorticity from the velocity data.

The development of S and Q (measures of the mean flow curvature and
convergence) along the wind-tunnel centreline are shown in figures 10 and 11, respec-
tively. Both have substantial peak values and we would expect strong effects on the
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FiGure 10. Development of the mean curvature parameter, S, along the wind-tunnel centreline.
Dashed lines mark the beginning of each curved subsection. Symbols as in figure 6. Mean
velocity was measured at all points marked by symbols, whereas the transverse velocity gradient
was measured only at the points marked by large symbols.
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FiGURE 11. Development of the mean acceleration parameter, Q, along the wind-tunnel
centreline. Dashed lines mark the beginning of each curved subsection. Symbols as in figure 6.
The streamwise mean velocity gradient was based on mean velocity measured at all points
marked by symbols, whereas the transverse velocity gradient was measured only at the points
marked by large symbols.

turbulence. For the non-converging subsections, S is approximately constant, but, in
the converging sections, S rises nearly in proportion to the rise in mean velocity,
U. Cases R, and R, have higher values of S because of the greater mean velocity
achieved there. Q rises throughout the converging sections because of the nonlinear
rise in streamwise strain rate that accompanies the linear decrease in cross-sectional
area (see §3.2). In summary, in the subsections without convergence Q is small;



322 A. G. L. Holloway, D. C. Roach and H. Akbary
[ ‘ [ ¥ [ ‘ [

0 100 200 300
s (cm)

FIGURE 12. Development of the mean shear strain, t, along the wind-tunnel centreline. Note
that shear strain in the straight tunnel prior to the start of curvature, 7, is 8.4 units. Symbols
as in figure 6.

S is relatively constant, and we would expect the turbulence to adjust towards a
fixed structure as observed by HT in their experiments of prolonged constant flow
curvature. However, where Q is non-zero, and increasing, we have a rise in S that
must be taken into account when assessing the impact of flow convergence on the
turbulence structure. Unfortunately, it is not possible to apply flow convergence while
keeping S constant if we are to conserve the mean vorticity of the flow.

The accumulated mean shear strain, 7, along the wind-tunnel centreline for each
of the flows is shown in figure 12. It can be seen that the greatest shear strain occurs
in the flows A,, and A, owing to the lower centreline speeds in these flows. The
values of At in the first curved (non-converging) subsection of A,, and A, are 3 and
4, respectively, which is less than the A7 =4.5 required for full adjustment to flow
curvature. In the second curved (converging) subsection, the values of At are less
than in the first subsection in both cases owing to the higher centreline speeds. Flow
A, has the greater shear strain of the two because of its higher shear rate. In cases
R,, and R, the flow convergence occurs in the first curved subsection giving higher
speeds throughout and less shear strain than in flows A,, and A;. The value of At in
the second curved subsection of flows R,, and Ry, where the speed is high throughout,
is less than 1.

6.3. Turbulence kinetic energy and length scales

A comparison of the development of g2 in each of the four flows is shown in figure 13
on semi-logarithmic scales to allow the comparison of exponents of growth. Prior to
the start of flow curvature, g* is growing in all four flows at similar rates. In the
curved test section all flows showed a decline in g?; however, the rate of decline
depended on the applied streamwise strain rate. In the first curved subsection, the
flows subjected to flow convergence, R,, and R,, show more rapid decay of g2, with the
stronger convergence producing the stronger effect. In the second curved subsection
flows A,, and A, are subjected to flow convergence and show comparable exponents
of decay. Similarly, the second curved subsection of flows R,, and R;, where the flow
convergence is removed, show very similar decay rates of g* to those in the first curved
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FIGURE 13. Comparison of streamwise development of g2 =u2+ v2 4+ w? and the streamwise
integral length scale, L,,, along the wind-tunnel centreline for all flows. Symbols as in figure 6.

subsection of flows A,, and A, prior the application of flow convergence. Fortuitously
perhaps, the ¢? levels from flows R,, and A,, converge in the second subsection and
those of R, and A, appear to be approaching convergence outside of the range of
measurement.

The development of the streamwise integral length scale, L,,, is also shown in
figure 13 to indicate generally the size of the turbulent motions (5-7cm) and to
show the effects of curvature and flow convergence on them. L,, was computed
using Taylor’s frozen flow hypothesis and the temporal integral scale estimated by
integration of the autocorrelation to its first zero. In the straight wind-tunnel section,
the turbulence is subjected to shearing only and L,, grew at similar rates in all
four flows. The application of curvature arrested this growth and produced some
modest decay. The similarity of the development of L,, among the four flows in the
curved tunnel, each with different flow convergences, leads us to conclude that flow
convergence has, at most, a weak effect on the integral length scales of the flow.

6.4. Reynolds stress anisotropy

The stress anisotropy provides a quantitative comparison of the structure of the
velocity fluctuations that develop under the combined influence of flow curvature
and convergence. The development of the anisotropy in the four flows is shown in
figures 14-17. In the straight section prior to the start of curvature, the stress
anisotropy has a fixed set of values, as described in §4.1.

The flows A,, and A; show similar development in the first curved subsection
where curvature alone is applied and approach the fixed values reported by HT for
prolonged constant curvature of uniform shear flow. In the second curved subsection,
the application of flow convergence causes all the normal components: m,,, m,, and
Myw, to move towards zero while the shear component m,,, is increased in magnitude.
The greater rate of convergence in flow A, produces stronger effects.

At the end of the first curved subsection, the anisotropy components of flows R,
and R, have similar values to those of A,, and A, at the end of the second curved
subsection where the flow convergence is similar. In the second curved subsection of
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FIGURE 14. Development of the Reynolds stress anisotropy along the wind-tunnel centreline
in flow A,,. Dashed lines indicate the beginning of each curved test section. Symbols are as
follows: @, m,,; O, Myy; ®, Myy; <O, Myy.
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FiGure 15. Development of the Reynolds stress anisotropy along the wind-tunnel centreline
in flow A;. Dashed lines indicate the beginning of each curved test section. Symbols as in
figure 14.

flows R,, and R, where the flow convergence is removed and curvature maintained, we
see that the anisotropy components recover towards the values expected for curvature
acting alone. The sensitivity of the turbulence to convergence is weaker than it is for
streamwise flow curvature if we consider the magnitude of the parameters of S and
QO shown in figures 10 and 11.

An overall measure of the stress anisotropy is its second invariant, II=m2, +
m2, +m? +2m2,. The development of II is shown in figure 18. Comparing the

Vv ww uv*

development of II for all four flows shows that application of both curvature and
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FIGURE 16. Development of the Reynolds stress anisotropy along the wind-tunnel centreline
in flow R,,. Dashed lines indicate the beginning of each curved test section. Symbols as in
figure 14.
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FIGURE 17. Development of the Reynolds stress anisotropy along the wind-tunnel centreline
in flow R;. Dashed lines indicate the beginning of each curved test section. Symbols as in
figure 14.

flow convergence causes a reduction of Reynolds stress anisotropy. Removal of the
flow convergence allows recovery of the anisotropy.

The development of the Reynolds stresses can be inferred from the development
of the components of the stress anisotropy tensor and the development of g> shown
in figure 13. Some general observations are that the stresses grew in the straight
wind-tunnel section with u? > w? > v? > uv. During the development of the stresses
in the curved subsections this order of the stresses is preserved while the stresses
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FiGUure 18. Comparison of streamwise development of the second invariant of the Reynolds
stress anisotropy tensor, I1, along the windtunnel centreline for all flows. Symbols as in figure 6.

generally declined in magnitude. In flows where streamwise strain was applied the
shear stress, uv, was observed to decline the least.

7. Discussion
7.1. Comparison with curved uniform shear flow experiments

The experimental study of HT considered the effects of prolonged constant flow
curvature on the turbulence of uniform shear flow. One conclusion of the study
was that the Reynolds stress anisotropy tended towards fixed values that correlate
with the parameter S. These results will be used in comparison to the present results
to distinguish the effects of flow convergence on the turbulence structure of the
underlying curved flow.

Fitted curves through the equilibrium values of the shear stress anisotropy reported
by HT for the range —0.15 <S <0.18 are shown in figure 19. In all of the present ex-
periments, the curvature is applied at the start of the curved test section and
maintained through to the end so that in subsections without flow convergence,
we would expect that the stress anisotropy would approach the equilibrium curves.
Similarly, we could conclude that deviations of the data of the present flows from
these curves could be attributed to the flow convergence. This allows us to separate
the effects of flow convergence from those of sustained flow curvature.

Flows A,, and A; have approximately constant values of S prior to the application
of flow convergence and, at the end of the first curved subsection, they would be
expected to have a structure close to that observed by HT. Values of shear anisotropy
at this point are shown on figure 19 as large circles and are close to the equilibrium
values. These are starting points for the application of flow convergence and have
values of Q =0. The development in the second curved subsection, where flow
convergence is applied, is charted as small circles. For flow A,, (solid circles) the value
of S remains within a narrow range, while for flow A; (open circles) the change in
S is significant. The effect of applying flow convergence is to direct the trajectory of
development above the equilibrium curve of HT.
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FIGURE 19. Development of the shear component of the Reynolds stress anisotropy from
the present flows compared with equilibrium values reported by HT for prolonged constant
curvature without acceleration. Solid line and + symbols represent the HT data; @ and O
represent the development of flows A,, and A;, respectively, in the second curved subsection
during the application of flow convergence; ¢ and ¢ represent the development of the flows
R,, and R in the second curved subsection after the removal of flow convergence. Dashed
lines correspond to the coordinates aligned with maximum shear rate.

The development of shear anisotropy in flows R, and R, begins at the end of
the first curved subsection with Q equal to 0.4 and 0.9, respectively. In this state,
the turbulence is well above the equilibrium data of HT. The relaxation from flow
convergence in the second curved subsection (Q = 0) is shown as small diamonds that
in both cases tend downward towards the equilibrium line of HT. The large diamonds
indicate the last measurement point. The initial rise in m,, resulting from removal
of flow convergence, most notable in the R, case, will be discussed in relation to the
principal direction of the mean strain rate in the next section.

7.2. Effect of flow convergence on the principal axes of mean strain
and Reynolds stress

It is clear from the present results that the application of flow convergence to curved
shear flow causes a further reduction in the turbulence activity and anisotropy.
This reduction in anisotropy is, however, non-uniform with the normal components
decreasing and the shear component tending towards values close to those measured
in uncurved flow. A partial explanation of this phenomenon can be based on the
Reynolds stress equations, (15)—(19) using the explicit appearance of mean strain and
turning. More directly, we may consider the relationship between the angle of the
principal mean strain rate and principal Reynolds stress anisotropy, 8 and y, to the
local streamwise direction. The angle 6§ was the parameter suggested by Spalart &
Shur (1997) as a replacement for S in turbulence modelling of curved flow and the
present experimental results provide an excellent opportunity to test their hypothesis
in curved and accelerating flow.

Curvature alone does not affect the angle 6 which is referred to the curvilinear
coordinate system. However, the application of flow convergence causes a turning
of the principal mean strain rate towards the streamwise direction and, as described
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Figure 20. Comparison of the streamwise development of the angle of principal mean strain,
0, and the angle of the principal direction of the Reynolds stress anisotropy tensor, y, measured
relative to the streamwise direction. Symbols as in figure 6.

by (10), the rate of turning of this axis is proportional to the rate of change of Q.
Figure 20 shows this effect where 6 adjusts from 45° (prior to flow convergence) to
as little as 10° in flow R, where Q is greatest. The rate of change of 6 is nearly
uniform in these cases. In the second curved subsections of R, and R,, where flow
convergence is removed, 6 quickly readjusts to approximately 45°.

Figure 20 shows the response of y to the application of curvature and streamwise
strain rate. Prior to the start of curvature y =—22° and this adjusts to approximately
—10° near the end of the first subsection of A,, and A, under the influence of curva-
ture alone (6 =45°). The difference (0 — y) adjusts gradually from 65° at the start of
curvature to 55° in these flows. Where flow convergence is applied, 8 decreases and
figure 20 shows that y tracks the reduction of 6 very closely. In the second curved
subsection of flow R, and R,,6 suddenly returns to 45° and y relaxes towards
—10°. Throughout the application of flow convergence (6 —y)~ 55°, as in the cases
having curvature alone. Whether the curvature and flow convergence are applied
simultaneously or sequentially does not seem to affect this relationship significantly.
This turning of the Reynolds stress tensor away from the s-coordinate is partially
responsible for the observed changes in the components of the Reynolds stress
anisotropy, as may be described by a rotational transformation of coordinates. The
shear component in (s, n)-coordinates is particularly sensitive to the angle y

myy = _%(ml - m2) sin (_2y)a (20)
where m; and m, are the principal values of the anisotropy.

Summarizing the above observations: the angle between the principal mean strain
rate direction and the s-coordinate is reduced by flow convergence, but is unaffected by
curvature. The angle between the principal mean strain rate direction and the principal
Reynolds stress direction is reduced by positive curvature, but is relatively unaffected
by the application of flow convergence. As a consequence, positive curvature tends
to rotate the principal stress direction towards the s-coordinate and flow convergence
tends to rotate it away from the s-coordinate. The effects tend to offset each other
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with the result that the shear stress is nearly unaffected by some combinations of
positive curvature and flow convergence as noted by Scharwz et al. (2002). We could
also interpret the effect of flow convergence as a rotation of the direction of the
maximum mean shear through the angle, 8, in the clockwise direction. In this view,
the turbulence of converging curved shear flows is equivalent to non-converging
curved flows when described in axes rotated through the angle B. Carrying this
argument further, for fixed values of S and Q in a flow, we would expect that the
structure of the turbulence would reach an asymptote and that this would match
the equilibrium data of HT when viewed in coordinates aligned with the maximum
shear. To test this hypothesis, we will ignore the rate of change of values of §
and Q and transform the shear anisotropy data from flows A, and A; shown in
figure 19 to coordinates of maximum mean shear rate using the local value of g.
These transformed data have been added to figure 19 as dashed lines. (Note that
for R, and R;, Q =0 and so no transformation is required.) The transformed data
approach the equilibrium data of HT although there is clearly a transient phase,
arising from the rate of change of Q and S, that is most pronounced for flows Aj
and R,.

We will now consider the effect of changing Q and its relationship with flow
curvature. It was shown in §3.2 that the application of flow curvature, such as in
the first curved subsections of flows A,, and A;, causes the rotation of the (s, n)-
coordinate directions and the mean shear relative to fixed laboratory coordinates at
a rate U./R.. A changing rate of streamwise strain rate (but fixed S), according to
(10), causes the mean shear to turn relative to the (s, n)-coordinates. As a result, the
total rate of turning of the mean shear relative to the laboratory coordinates is, for

constant S,
-1 —(1—
amu (e ZUo9 0y o
R, (1—S)+40Q2 ds

For positive curvature and flow convergence, as in the second subsection of flows
A,, and A;, the curvature of the flow is effectively increased and the effect is initially
significant when we consider the values of Q shown in figure 11. This analysis offers
the explanation that the observed double dip of m,, for flow A, shown in figure 19
(dashed line) before it finally rises towards the equilibrium line is due to the increase
in slope of dQ/ds near the midpoint. The opposite effect occurs at the start of the
second subsection of flows R, and R,, where dQ/ds <0 and is large enough in
magnitude to effectively reverse the sign of the curvature. As a consequence, the data
of R; shown in figure 19 first moves upward and away from the equilibrium line
before finally moving towards it.

The above relationship between streamwise strain rate and streamwise curvature
would allow the shear anisotropy in (s, n)-coordinates, m,,, in a converging curved
shear flow, having parameters S and Q, to be determined from data for a non-
converging curved shear flow having the parameter S,,. The complete formulation is
as follows

N a
0% + (1522
Seg =S+ 9 Tinax 0 Tinax ’ (22)
V(1= S8)* 4402
1-S e
p=jtan”! <g> T (23)

My = — %(m;u —m,,)sin(—28) + m,, cos(—28), (24)
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FIGURE 21. Profile of dimensionless curvature and flow convergence parameters, S and Q, in
the flow of Akbary (1997). Solid lines joining data points indicate S and dashed lines Q. The
circles represent flow without flow convergence (Q =0). The diamonds represent flow which
combine flow convergence and curvature.

where m,,,, m), and m,, are the components of anisotropy in the non-converging

curved flow and 7,, 1s the total shear strain based on the maximum shear rate;
numerically equal to d; as given by (8). If S,, is constant then m,,, m,, and m,,
would be the asymptotic values measured by HT for prolonged constant curvature.
In more general circumstances of changing S, the state of stress would have to be
measured or estimated from a turbulence model. It is worth noting that (22) involves
partial second derivatives of the streamwise component of mean velocity that would

be very difficult to calculate from experimental data.

7.3. Comparison to the accelerating, curved uniform shear flow
experiments of Akbary (1997)

The experiments of Akbary (1997) used the same experimental facility as Roach
(2001) to study the simultaneous application of flow curvature and convergence to
straight uniform shear flow in the first curved subsection (like flows R, and R;)
and the subsequent removal of flow curvature and convergence in the second curved
subsection where the flow was allowed to relax towards uncurved uniform shear flow.
There are four flows in total; two with only curvature that may be used as baseline
flows, and two with curvature and flow convergence. The profiles of § and Q from
the Akbary experiments are shown in figure 21. One of these experiments is unique
because it combines negative curvature with flow convergence. The levels of |S| and
Q in the first curved subsection are comparable to the first curved subsection of flow
R, in the present experiments.

The response of the shear component of the anisotropy, m,,, is shown in figure 22.
There is clearly an increase in m,, resulting from flow acceleration in the first curved
subsection and this increase is greater in magnitude for positive S, especially when we
consider that the magnitude of S is greater in this case. If the effects of curvature and
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FIGURE 22. Development of the shear component of the stress anisotropy in the four uniform
shear flows of Akbary (1997). Symbols correspond to those used in the mean flow description
of figure 21.

flow convergence were independent and therefore simply additive, we would expect
that the effect of convergence on m,, would not depend on the sign of S. In the
second curved subsection, where the flow adjusts to become a straight uniform shear
flow, the turbulence relaxes and m,, from the four different flows converge, although
within the region of measurement they do not fully recover the values held prior to
the start of curvature. The development of ¢*> and L,, for these flows is shown in
figure 23.

7.4. Comparison with the accelerating boundary-layer flow

The similarity between outer-layer turbulence of a boundary layer and that of uniform
free shear flow such as those of the present experiments was used by Chebbi et al.
(1998) to successfully explain some of the effects of convex curvature on the boundary
layer. The analogy was based on the equivalence of local mean shear rates and
turbulence anisotropy around the mid-thickness of the boundary layer while ignoring
flow inhomogeneity. Here, we will extend the analogy to include the effects of
favourable pressure gradient with the hope of providing a partial explanation of its
observed effects on boundary-layer turbulence. It must be remembered, however, that
direct viscous effects are absent from the uniform shear flow and therefore those
aspects of pressure gradient effects that scale with viscosity cannot be represented.
Schwarz et al. (2002) studied the development of a turbulent boundary layer
that was simultaneously subjected to both convex (positive) curvature and pressure
gradients. The flow most relevant to the present study is their TS2 flow with §/R ~ 0.05.
It was subjected to zero pressure gradient, case ZPGC, and strong favourable pressure
gradient with 10%(v/U?)(dU,/dx) = 1.5, case SFPGC. As shown in §3.2, the present
flows also have (1/U?)(dU./dx) ~ constant. The principal angles of the mean strain
rate and Reynolds stress at the midpoint of the boundary layer, y/§ ~0.5 have been
chosen as the basis of comparison between these flows and the present study. For this
location, values of S and Q and the principal angle of mean strain rate and Reynolds



332 A. G. L. Holloway, D. C. Roach and H. Akbary

s — S, (cm) T—71, S 0 0 y 60—y
Flat plate - 0 0 45 —26 71
0.0 0.0 0.11 0.12 37 —26 63
6.11 0.73 0.12 0.14 36 —24 60
12.2 1.32 0.13 0.17 34 —-22 56
18.3 1.62 0.14 0.22 31 =20 51

TABLE 3. Properties of boundary layer flow TS2 with combined strong favourable pressure
gradient and curvature (SFPC) from Schwarz et al. (2002). Mean flow and turbulence quantities
correspond to y/8 ~0.5.
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FIGURE 23. Development of the turbulence scales, g> and L, in the four uniform shear flows
of Akbary (1997). Symbols correspond to those used in the mean flow description of figure 21.

stress for SFPGC are given in table 3 where we have S~0.12 and Q ramping up
from 0.12 at the start of curvature to 0.22 after 15° of turning or 1.6 units of shear
strain. These conditions closely correspond to the first curved subsection of flow R,
in the present study up to the point s =75cm. In the discussion of the SFPGC case,
Schwarz et al. (2002) make the qualitative observation that there is practically no
adjustment at all to the combined curvature and pressure gradient; a very similar
observation to that made for the present flow. According to the present discussion,
this results from the cancelling effects of positive curvature and favourable pressure
gradient on the direction of the principle direction of the Reynolds stress tensor.
The value given by Schwarz et al. (2002) for the principal Reynolds stress direction
for a flat-plate boundary layer is y =—26° and presumably this would be taken as
a starting point for development where 6 =45°. As the flow develops, the results
approach 6 =31° and y =—20°. This gives the angle between the principal mean
strain rate and the principal Reynolds stress, & — y ~70° prior to the application
of curvature and pressure gradient and 51° at the last point of measurement. The
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s (cm) (0] 0 y 00—y
ZPG” 0 45 —26 71
940 0.11 39 —19 58
990 0.34 27 —42 69

TaBLE 4. Properties of boundary-layer flow (uncurved) subjected to strong favourable pressure
gradient from Blackwelder & Kovasnay (1972). Mean flow and turbulence quantities corres-
pond to y/§ ~0.5. Zero pressure gradient (ZPG) data from flat plate data of Schwarz et al.
(2002).

corresponding values for flow R,, shows an adjustment from 6 =45° and y =—22° to
0 =32° and y =—16°. We conclude that the response observed for principal angles
of stress and mean strain rate in the present uniformly sheared flow is at least
qualitatively similar to this boundary-layer flow.

Another interesting comparison is with the uncurved accelerating boundary layer.
In the experiment by Blackwelder & Kovasnay (1972), the value of 10%(v/U2)(dU, /dx)
started from 0 at s <900 cm and reached a maximum of 1.5 at s = 1000 cm. Values of
Q and the principal angle of the Reynolds stress were extracted from their published
data for y/8 ~0.5 and are given in table 4. Similar to the present accelerating flows,
the value of 6 declined and y increased with the difference, 60° <6 —y < 70°. This,
too, agrees with the present conclusion that acceleration has a weak effect on the
angle between principle Reynolds stress and mean strain rate.

Warnack & Fernholz (1998) reported a substantial increase in the maximum value
of m,, (located at y™ ~ 500) in two of their accelerating boundary layers. Cases 1 and
2 have 10%(v/U?)(dU,/dx) =2 and 4 and Reynolds numbers based on the momentum
thickness of 2500 and 900, respectively. An evaluation of the mean velocity profile in
Case 1 at the point of maximum acceleration (x =3.1m) gives Q ~0.17. For Case 2,
the mean shear rate in the vicinity of maximum acceleration is weak and at y™ ~ 500
difficult to determine accurately. We could say that Q > 0.85 at x > 1.45m. In both
Cases 1 and 2, prior to the start of acceleration, m,, =—0.15 (typical of sheared
turbulence) and this increased to maximum values —0.195 and —0.205 somewhat
downstream of the position of maximum acceleration. These observed increases
in m,, can be explained using the arguments regarding principal mean strain rate
presented above as follows. The acceleration causes the principal direction of mean
strain rate, 6, to rotate towards the streamwise direction (as described by (9)) and,
according to the present findings, the principal direction of the Reynolds stresses, y,
rotates with it with a fixed angular separation of 65° while retaining fixed invariants.
This causes y to become more negative and, according to (20), this will produce
an increase in m,,. In Case 1 with Q ~0.17, we have 6 ~35° and y ~—30° which
gives (assuming m; and mj in (20) are fixed) (m,)p=0.17/(Mu)g—o = 1.34. Before
considering Case 2, it should be noted that the maximum rise in m,, predicted by
(9) and (20) is a factor of 1.6 which occurs at Q =0.6. At higher Q, the rise of m,, is
less and, at very large Q, it tends to a factor of 1.19. In Case 2, if we take Q > 0.85,
6 <15° and y <—50° we obtain (m,,)g<0.85/(Muv) g < 1.5. This simple analysis does
fit the observed rise in m,, roughly and explains why the two flows may have similar
results in spite of the stronger acceleration in Case 2. The rate of change of Q has
also been hypothesized (according to (22)) to have an effect on m,, ; increasing Q has
effects similar to convex curvature and decreasing Q has similar effects to concave
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curvature. The rate of change of Q is difficult to evaluate and it is not clear whether
the development of m,, presented by Warnack & Fernholz (1998) shows such effects.

8. Conclusion

Uniformly sheared turbulence was subjected to various combinations of stabilizing
streamline curvature and flow convergence. These included application of flow
convergence to curved flow, and removal of flow convergence from curved flow. The
work of Akbary (1997) was also described for the cases of simultaneous application of
flow convergence and curvature, stabilizing and destabilizing, and their simultaneous
removal. The experiments revealed that the mean streamwise strain rate was the best
measure of the effects of flow convergence on curved uniform shear flow and that there
exist similarities between the effects of the streamwise strain rate and the strain rate
produced by curvature. Both streamwise strain rate and stabilizing curvature reduce
the production of turbulence energy and the overall Reynolds stress anisotropy. They
have opposite effects, however, on the shear component of the stress anisotropy,
my,. This effect was best explained by consideration of the principal angle of the
mean strain rate and Reynolds stress directions. The data showed that stabilizing
curvature reduces the angle between these two directions, and hence reduces m,,,
while streamwise strain rate does not significantly affect it. Streamwise strain rate
does, however, turn the principal mean strain rate towards the streamwise direction
and therefore moves the principal direction of the Reynolds stress away from the
streamwise direction, increasing m,,. In both cases, the angle between the principal
stress and principal mean strain is increased so that turbulence production is reduced.

A relationship between streamwise strain rate and streamwise curvature was formed
on the basis of their producing equivalent directions of the principal mean strain rate
measured relative to a laboratory frame. It shows that increasing streamwise strain
rate effectively increases the flow curvature and a decreasing streamwise strain rate
effectively decreases the flow curvature. In one of the flows where flow convergence
was suddenly removed, the rate of change of streamwise strain rate was sufficiently
negative to effectively create conditions similar to destabilizing curvature for a short
distance. The present experimental data were found to be in agreement with these
predictions. The influential role of the principal mean strain rate suggested by the
present experiments lends credence to the hypothesis of Spalart & Shur (1997) that
it is an important parameter for use in turbulence modelling.

A comparison to the accelerating curved boundary-layer study of Schwarz et al.
(2002), Warnack & Fernholz (1998) and Blackwelder & Kovazny (1972) showed that
the effects measured in the present flows are roughly consistent with their outer-
layer data. The comparison provides some insight into the problem of superimposed
favourable pressure gradients and streamwise curvature in boundary-layer flows.
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